Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1639
Title: | In silico drug screen reveals potential competitive MTHFR inhibitors for clinical repurposing | Authors: | Keske, Nazligul Ozay, Basak Tukel, Ezgi Yagmur Mentes, Muratcan Yandim, Cihangir |
Keywords: | Docking MTHFR cancer molecular dynamics drug screen PyRx repurposing inhibitor One-Carbon Metabolism Cancer-Cell-Survival Molecular-Dynamics Reductase Mthfr Web Server Discovery Binding Polymorphisms Docking Risk |
Publisher: | Taylor & Francis Inc | Abstract: | MTHFR (Methylenetetrahydrofolate reductase) is a pivotal enzyme involved in one-carbon metabolism, which is critical for the proliferation of cancer cells. In line with this, published literature showed that MTHFR knockdown caused impaired growth of multiple types of cancer cells. Moreover, higher MTHFR expression levels were linked to shorter overall survival in hepatocellular carcinoma, adrenocortical carcinoma, and low-grade glioma, bringing the need to design MTHFR inhibitors as a possible treatment option. No competitive inhibitors of MTHFR have been reported as of today. This study aimed to identify potential competitive MTHFR inhibitor candidates using an in silico drug screen. A total of 30470 molecules containing biogenic compounds, FDA-approved drugs, and those in clinical trials were screened against the catalytic pocket of MTHFR in the presence and absence of cofactors. Binding energy and ADMET analysis revealed that Vilanterol (beta 2-adrenergic agonist), Selexipag (prostacyclin receptor agonist), and Ramipril Diketopiperazine (ACE inhibitor) are potential competitive inhibitors of MTHFR. Molecular dynamics analyses and MM-PBSA calculations with these compounds particularly revealed the amino acids between 285-290 for ligand binding and highlighted Vilanterol as the strongest candidate for MTHFR inhibition. Our results could guide the development of novel MTHFR inhibitor compounds, which could be inspired by the drugs brought into the spotlight here. More importantly, these potential candidates could be quhickly tested as a repurposing strategy in pre-clinical and clinical studies of the cancers mentioned above.Communicated by Ramaswamy H. Sarma | Description: | Article; Early Access | URI: | https://doi.org/10.1080/07391102.2022.2163697 https://hdl.handle.net/20.500.14365/1639 |
ISSN: | 0739-1102 1538-0254 |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
2
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 20, 2024
Page view(s)
86
checked on Nov 18, 2024
Download(s)
66
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.