Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/182
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAnagün, Ahmet Sermet-
dc.contributor.authorÇevik, Neslihan-
dc.date.accessioned2023-06-16T12:28:00Z-
dc.date.available2023-06-16T12:28:00Z-
dc.date.issued2020-
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=_F5QEpayDXGqGZlp9XiFtGUpeHA7m1qcTG4zGdWZLl1a4cB1nWpV6yQ-ErVzu5qd-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/182-
dc.description.abstractHava durumu ve hava durumu tahminlerinin kesinliği, özellikle yolcu taşımacılığı alanında ve günlük yaşamımızda çok önemli bir role sahiptir, çünkü hizmetin kalitesini ve güvenliğini doğrudan etkiler. Bu çalışmada amaç, farklı tahmin yaklaşımları analizler sonucu elde edilen tahmin hatalarını kullanarak karşılaştırmaktır. Veriler, TC Tarım ve Orman Bakanlığı, İzmir Meteoroloji Genel Müdürlüğü Adnan Menderes Havalimanı tarafından 2015-2017 yılları için, sekiz bağımsız değişken ile günlük ortalama sıcaklık ve rüzgar hızı iki bağımlı değişken olacak şekilde sağlanmıştır. Çoklu Gen Genetik Programlama Yaklaşımı ve Gaussian Regresyonunun, SVR ve ANN ile karşılaştırıldığında daha düşük RMSE değerleriyle daha başarılı bir performansa sahip olduğunu göstermiştir.en_US
dc.description.abstractWeather and precision of weather forecasts have a very important role in our daily lives especially in the field of transportation since it directly affects the quality and the safety of the service. In this study, the aim was to compare the forecast errors executed by different forecasting approaches. The data has been provided by Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Meteorology for Izmir Adnan Menderes Airport with eight independent variables and the daily average temperature and daily average wind speed as the dependent variables for the years 2015-2017. Results show that Multi-Gene Genetic Programming Approach and Gaussian Regression with kernels; Rational Quadratic and Squared Exponential models have lower RMSE values compared with the SVR and ANN.en_US
dc.language.isoenen_US
dc.publisherİzmir Ekonomi Üniversitesien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEndüstri ve Endüstri Mühendisliğien_US
dc.subjectIndustrial and Industrial Engineeringen_US
dc.subjectDoğrusal olmayan regresyonen_US
dc.subjectNonlinear regressionen_US
dc.subjectYapay sinir ağlarıen_US
dc.subjectArtificial neural networksen_US
dc.titleA multigene genetic programming approach on weather forecastingen_US
dc.title.alternativeÇoklu gen genetik programlama yaklaşımı ile hava tahminien_US
dc.typeMaster Thesisen_US
dc.departmentİEÜ, Lisansüstü Eğitim Enstitüsü, Endüstri Mühendisliği Ana Bilim Dalıen_US
dc.identifier.startpage1en_US
dc.identifier.endpage71en_US
dc.institutionauthorÇevik, Neslihan-
dc.relation.publicationcategoryTezen_US
dc.identifier.yoktezid633211en_US
item.grantfulltextopen-
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.09. Industrial Engineering-
Appears in Collections:Lisansüstü Eğitim Enstitüsü Tez Koleksiyonu
Files in This Item:
File SizeFormat 
182.pdf2.44 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

76
checked on Nov 18, 2024

Download(s)

64
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.