Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1953
Title: Automated patient-specific classification of premature ventricular contractions
Authors: İnce, Türker
Kiranyaz, Serkan
Gabbouj, Moncef
Keywords: Wavelet Transform
Neural-Network
Ecg
Publisher: IEEE
Abstract: In this paper, we present an automated patient-specific electrocardiogram (ECG) beat classifier designed or accurate defection of premature ventricular contractions (PVCs). In the proposed feature extraction scheme, the principal component analysis (PCA) is applied to the dyadic wavelet transform (DWT) of the ECG signal to extract morphological ECG features, which are then combined with the temporal features to form a resultant efficient feature vector. For the classification scheme, we selected the feed-forward artificial neural networks (ANNs) optimally designed by the multi-dimensional particle swarm optimization (MD-PSO) technique, which evolves the structure and weights of the network specifically for each patient. Training data for the ANN classifier include both global (total of 150 representative beats randomly sampled from each class in selected training files) and local (the first 5 min of a patient's ECG recording) training patterns. Simulation results using 40 files in the MIT/BIH arrhythmia database achieved high average accuracy of 97% for differentiating normal, PVC, and other beats.
Description: 30th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society -- AUG 20-24, 2008 -- Vancouver, CANADA
URI: https://doi.org/10.1109/IEMBS.2008.4650453
https://hdl.handle.net/20.500.14365/1953
ISBN: 978-1-4244-1814-5
ISSN: 1557-170X
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1953.pdf
  Restricted Access
219.84 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

20
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 20, 2024

Page view(s)

240
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.