Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMishchenko, Yuriy-
dc.contributor.authorKaya, Murat-
dc.contributor.authorOzbay, Erkan-
dc.contributor.authorYanar, Hilmi-
dc.date.accessioned2023-06-16T14:31:05Z-
dc.date.available2023-06-16T14:31:05Z-
dc.date.issued2019-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2018.2865941-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1974-
dc.description.abstractObjective: We develop an electroencephalography (EEG)-based noninvasive brain-computer interface (BCI) system having short training time (15 min) that can be applied for high-performance control of robotic prosthetic systems. Methods: A signal processing system for detecting user's mental intent from EEG data based on up to six-state BCI paradigm is developed and used. Results: We examine the performance of the developed system on experimental data collected from 12 healthy participants and analyzed offline. Out of 12 participants 3 achieve an accuracy of six-state communication in 80%-90% range, while 2 participants do not achieve a satisfactory accuracy. We further implement an online BCI system for control of a virtual 3 degree-of-freedom (dof) prosthetic manipulator and test it with our three best participants. Two participants are able to successfully complete 100% of the test tasks, demonstrating on average the accuracy rate of 80% and requiring 5-10 s to execute a manipulator move. One participant failed to demonstrate a satisfactory performance in online trials. Conclusion: We show that our offline EEG BCI system can correctly identify different motor imageries in EEG data with high accuracy and our online BCI system can be used for control of a virtual 3 dof prosthetic manipulator. Significance: Our results prepare foundation for further development of higher performance EEG BCI-based robotic assistive systems and demonstrate that EEG-based BCI may be feasible for robotic control by paralyzed and immobilized individuals.en_US
dc.description.sponsorshipTUBITAK ARDEB [113E611]; Young Investigator Award of the Science Academy under the BAGEP programen_US
dc.description.sponsorshipThis work was supported in part by the TUBITAK ARDEB under Grant 113E611 and in part by the Young Investigator Award of the Science Academy under the BAGEP program. (Corresponding author: Hilmi Yanar.)en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBrain machine interfacesen_US
dc.subjectelectroencephalographyen_US
dc.subjectneural prostheticsen_US
dc.subjectSingle-Trial Eegen_US
dc.subjectMachine Interfaceen_US
dc.subjectPrimary Motoren_US
dc.subjectMovementen_US
dc.subjectClassificationen_US
dc.subjectGraspen_US
dc.subjectReachen_US
dc.subjectSignalsen_US
dc.subjectArmen_US
dc.subjectSynchronizationen_US
dc.titleDeveloping a Three- to Six-State EEG-Based Brain-Computer Interface for a Virtual Robotic Manipulator Controlen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2018.2865941-
dc.identifier.pmid30130168en_US
dc.identifier.scopus2-s2.0-85051755133en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridözbay, erkan/0000-0002-8781-3877-
dc.authoridYanar, Hilmi/0000-0002-6913-8441-
dc.authorwosidKAYA, Murat/GPG-3016-2022-
dc.authorwosidözbay, erkan/AAK-4122-2021-
dc.authorwosidYanar, Hilmi/P-9683-2015-
dc.authorscopusid36903063500-
dc.authorscopusid57190737208-
dc.authorscopusid57203460457-
dc.authorscopusid56019572100-
dc.identifier.volume66en_US
dc.identifier.issue4en_US
dc.identifier.startpage977en_US
dc.identifier.endpage987en_US
dc.identifier.wosWOS:000462363300008en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1974.pdf2.82 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

30
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

23
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Download(s)

26
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.