Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1975
Title: Robust R-Peak Detection in Low-Quality Holter ECGs Using 1D Convolutional Neural Network
Authors: Zahid, Muhammad Uzair
Kiranyaz, Serkan
İnce, Türker
Devecioglu, Ozer Can
Chowdhury, Muhammad E. H.
Khandakar, Amith
Tahir, Anas
Keywords: Electrocardiography
Sensitivity
Performance evaluation
Monitoring
Benchmark testing
Noise measurement
Electronic mail
1D convolutional neural network
R-peak detection
ECG monitoring
holter registers
Qrs
Classification
Transform
Ann
Publisher: IEEE-Inst Electrical Electronics Engineers Inc
Abstract: Objective: Noise and low quality of ECG signals acquired from Holter or wearable devices deteriorate the accuracy and robustness of R-peak detection algorithms. This paper presents a generic and robust system for R-peak detection in Holter ECG signals. While many proposed algorithms have successfully addressed the problem of ECG R-peak detection, there is still a notable gap in the performance of these detectors on such low-quality ECG records. Methods: In this study, a novel implementation of the 1D Convolutional Neural Network (CNN) is used integrated with a verification model to reduce the number of false alarms. This CNN architecture consists of an encoder block and a corresponding decoder block followed by a sample-wise classification layer to construct the 1D segmentation map of R-peaks from the input ECG signal. Once the proposed model has been trained, it can solely be used to detect R-peaks possibly in a single channel ECG data stream quickly and accurately, or alternatively, such a solution can be conveniently employed for real-time monitoring on a lightweight portable device. Results: The model is tested on two open-access ECG databases: The China Physiological Signal Challenge (2020) database (CPSC-DB) with more than one million beats, and the commonly used MIT-BIH Arrhythmia Database (MIT-DB). Experimental results demonstrate that the proposed systematic approach achieves 99.30% F1-score, 99.69% recall, and 98.91% precision in CPSC-DB, which is the best R-peak detection performance ever achieved. Results also demonstrate similar or better performance than most competing algorithms on MIT-DB with 99.83% F1-score, 99.85% recall, and 99.82% precision. Significance: Compared to all competing methods, the proposed approach can reduce the false-positives and false-negatives in Holter ECG signals by more than 54% and 82%, respectively. Conclusion: Finally, the simple and invariant nature of the parameters leads to a highly generic system and therefore applicable to any ECG dataset.
URI: https://doi.org/10.1109/TBME.2021.3088218
https://hdl.handle.net/20.500.14365/1975
ISSN: 0018-9294
1558-2531
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1975.pdf3.27 MBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

48
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

31
checked on Nov 20, 2024

Page view(s)

248
checked on Nov 18, 2024

Download(s)

30
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.