Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1976
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoyak, Refik-
dc.contributor.authorNavruz, Ebru-
dc.contributor.authorErsoy, Eda Ozgu-
dc.contributor.authorCruz, Gastao-
dc.contributor.authorPrieto, Claudia-
dc.contributor.authorKing, Andrew P.-
dc.contributor.authorUnay, Devrim-
dc.date.accessioned2023-06-16T14:31:05Z-
dc.date.available2023-06-16T14:31:05Z-
dc.date.issued2022-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2021.3116877-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1976-
dc.description.abstractObjective: Magnetic Resonance Fingerprinting (MRF) enables simultaneous mapping of multiple tissue parameters such as T1 and T2 relaxation times. The working principle of MRF relies on varying acquisition parameters pseudo-randomly, so that each tissue generates its unique signal evolution during scanning. Even though MRF provides faster scanning, it has disadvantages such as erroneous and slow generation of the corresponding parametric maps, which needs to be improved. Moreover, there is a need for explainable architectures for understanding the guiding signals to generate accurate parametric maps. Methods: In this paper, we addressed both of these shortcomings by proposing a novel neural network architecture (CONV-ICA) consisting of a channel-wise attention module and a fully convolutional network. Another contribution of this study is a new channel selection method: attention-based channel selection. Furthermore, the effect of patch size and temporal frames of MRF signal on channel reduction are analyzed by employing a channel-wise attention. Results: The proposed approach, evaluated over 3 simulated MRF signals, reduces error in the reconstruction of tissue parameters by 8.88% for T1 and 75.44% for T2 with respect to state-of-the-art methods. Conclusion: It is demonstrated that channel attention mechanism helps to focus on informative channels and fully convolutional network extracts spatial information achieve the best reconstruction performance. Significance: As a consequence of improvement in fast and accurate manner, presented work can contribute to make MRF appropriate for clinical use.en_US
dc.description.sponsorshipEPSRC programme [EP/P001009/1]; Wellcome EPSRC Centre for Medical Engineering at the School of Biomedical Engineering, and Imaging Sciences, King's College London [WT 203148/Z/16/Z]; Scientific and Technological Research Council of Turkey (TUBITAK) [118C353]; EPSRC [EP/P001009/1] Funding Source: UKRIen_US
dc.description.sponsorshipThis work was supported in part by EPSRC programme under Grant EP/P001009/1, in part by Wellcome EPSRC Centre for Medical Engineering at the School of Biomedical Engineering, and Imaging Sciences, King's College London under Grant WT 203148/Z/16/Z, and in part by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 118C353.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDictionariesen_US
dc.subjectComputer architectureen_US
dc.subjectImage reconstructionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectConvolutionen_US
dc.subjectTestingen_US
dc.subjectPrincipal component analysisen_US
dc.subjectChannel attentionen_US
dc.subjectdeep learningen_US
dc.subjectMR fingerprintingen_US
dc.subjectreconstructionen_US
dc.subjectResonanceen_US
dc.subjectReconstructionen_US
dc.titleChannel Attention Networks for Robust MR Fingerprint Matchingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2021.3116877-
dc.identifier.pmid34591755en_US
dc.identifier.scopus2-s2.0-85116915396en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridoksuz, ilkay/0000-0001-6478-0534-
dc.authoridUnay, Devrim/0000-0003-3478-7318-
dc.authoridCruz, Gastao/0000-0002-7397-9104-
dc.authoridKing, Andrew/0000-0002-9965-7015-
dc.authorwosidoksuz, ilkay/I-8364-2014-
dc.authorscopusid57209734831-
dc.authorscopusid57221630382-
dc.authorscopusid57221636606-
dc.authorscopusid57188718800-
dc.authorscopusid35337695700-
dc.authorscopusid24344292700-
dc.authorscopusid55922238900-
dc.identifier.volume69en_US
dc.identifier.issue4en_US
dc.identifier.startpage1398en_US
dc.identifier.endpage1405en_US
dc.identifier.wosWOS:000792917400017en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1976.pdf4.22 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 20, 2024

Page view(s)

92
checked on Nov 18, 2024

Download(s)

40
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.