Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/1976
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soyak, Refik | - |
dc.contributor.author | Navruz, Ebru | - |
dc.contributor.author | Ersoy, Eda Ozgu | - |
dc.contributor.author | Cruz, Gastao | - |
dc.contributor.author | Prieto, Claudia | - |
dc.contributor.author | King, Andrew P. | - |
dc.contributor.author | Unay, Devrim | - |
dc.date.accessioned | 2023-06-16T14:31:05Z | - |
dc.date.available | 2023-06-16T14:31:05Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0018-9294 | - |
dc.identifier.issn | 1558-2531 | - |
dc.identifier.uri | https://doi.org/10.1109/TBME.2021.3116877 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/1976 | - |
dc.description.abstract | Objective: Magnetic Resonance Fingerprinting (MRF) enables simultaneous mapping of multiple tissue parameters such as T1 and T2 relaxation times. The working principle of MRF relies on varying acquisition parameters pseudo-randomly, so that each tissue generates its unique signal evolution during scanning. Even though MRF provides faster scanning, it has disadvantages such as erroneous and slow generation of the corresponding parametric maps, which needs to be improved. Moreover, there is a need for explainable architectures for understanding the guiding signals to generate accurate parametric maps. Methods: In this paper, we addressed both of these shortcomings by proposing a novel neural network architecture (CONV-ICA) consisting of a channel-wise attention module and a fully convolutional network. Another contribution of this study is a new channel selection method: attention-based channel selection. Furthermore, the effect of patch size and temporal frames of MRF signal on channel reduction are analyzed by employing a channel-wise attention. Results: The proposed approach, evaluated over 3 simulated MRF signals, reduces error in the reconstruction of tissue parameters by 8.88% for T1 and 75.44% for T2 with respect to state-of-the-art methods. Conclusion: It is demonstrated that channel attention mechanism helps to focus on informative channels and fully convolutional network extracts spatial information achieve the best reconstruction performance. Significance: As a consequence of improvement in fast and accurate manner, presented work can contribute to make MRF appropriate for clinical use. | en_US |
dc.description.sponsorship | EPSRC programme [EP/P001009/1]; Wellcome EPSRC Centre for Medical Engineering at the School of Biomedical Engineering, and Imaging Sciences, King's College London [WT 203148/Z/16/Z]; Scientific and Technological Research Council of Turkey (TUBITAK) [118C353]; EPSRC [EP/P001009/1] Funding Source: UKRI | en_US |
dc.description.sponsorship | This work was supported in part by EPSRC programme under Grant EP/P001009/1, in part by Wellcome EPSRC Centre for Medical Engineering at the School of Biomedical Engineering, and Imaging Sciences, King's College London under Grant WT 203148/Z/16/Z, and in part by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 118C353. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Transactıons on Bıomedıcal Engıneerıng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Dictionaries | en_US |
dc.subject | Computer architecture | en_US |
dc.subject | Image reconstruction | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Convolution | en_US |
dc.subject | Testing | en_US |
dc.subject | Principal component analysis | en_US |
dc.subject | Channel attention | en_US |
dc.subject | deep learning | en_US |
dc.subject | MR fingerprinting | en_US |
dc.subject | reconstruction | en_US |
dc.subject | Resonance | en_US |
dc.subject | Reconstruction | en_US |
dc.title | Channel Attention Networks for Robust MR Fingerprint Matching | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/TBME.2021.3116877 | - |
dc.identifier.pmid | 34591755 | en_US |
dc.identifier.scopus | 2-s2.0-85116915396 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | oksuz, ilkay/0000-0001-6478-0534 | - |
dc.authorid | Unay, Devrim/0000-0003-3478-7318 | - |
dc.authorid | Cruz, Gastao/0000-0002-7397-9104 | - |
dc.authorid | King, Andrew/0000-0002-9965-7015 | - |
dc.authorwosid | oksuz, ilkay/I-8364-2014 | - |
dc.authorscopusid | 57209734831 | - |
dc.authorscopusid | 57221630382 | - |
dc.authorscopusid | 57221636606 | - |
dc.authorscopusid | 57188718800 | - |
dc.authorscopusid | 35337695700 | - |
dc.authorscopusid | 24344292700 | - |
dc.authorscopusid | 55922238900 | - |
dc.identifier.volume | 69 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 1398 | en_US |
dc.identifier.endpage | 1405 | en_US |
dc.identifier.wos | WOS:000792917400017 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.02. Biomedical Engineering | - |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
8
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 20, 2024
Page view(s)
92
checked on Nov 18, 2024
Download(s)
40
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.