Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/1977
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalik, Junaid-
dc.contributor.authorDevecioglu, Ozer Can-
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T14:31:05Z-
dc.date.available2023-06-16T14:31:05Z-
dc.date.issued2022-
dc.identifier.issn0018-9294-
dc.identifier.issn1558-2531-
dc.identifier.urihttps://doi.org/10.1109/TBME.2021.3135622-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/1977-
dc.description.abstractObjective: Despitethe proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. Recently, compact 1D Convolutional Neural Networks (CNNs) have achieved the state-of-the-art performance level for the accurate classification of ventricular and supraventricular ectopic beats. However, several studies have demonstrated the fact that the learning performance of the conventional CNNs is limited because they are homogenous networks with a basic (linear) neuron model. In order to address this deficiency and further boost the patient-specific ECG classification performance, in this study, we propose 1D Self-organized Operational Neural Networks (1D Self-ONNs). Methods: Due to its self-organization capability, Self-ONNs have the utmost advantage and superiority over conventional ONNs where the prior operator search within the operator set library to find the best possible set of operators is entirely avoided. Results: Under AAMI recommendations and with minimal common training data used, over the entire MIT-BIH dataset 1D Self-ONNs have achieved 98% and 99.04% average accuracies, 76.6% and 93.7% average F1 scores on supra-ventricular and ventricular ectopic beat (VEB) classifications, respectively, which is the highest performance level ever reported. Conclusion: As the first study where 1D Self-ONNs are ever proposed for a classification task, our results over the MIT-BIH arrhythmia benchmark database demonstrate that 1D Self-ONNs can surpass 1D CNNs with a significant margin while having a similar computational complexity.en_US
dc.description.sponsorshipHuawei; Academy of Finland project AwCHaen_US
dc.description.sponsorshipThis work was supported in part by Huawei and Academy of Finland project AwCHa.en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactıons on Bıomedıcal Engıneerıngen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNeuronsen_US
dc.subjectElectrocardiographyen_US
dc.subjectTrainingen_US
dc.subjectReal-time systemsen_US
dc.subjectKernelen_US
dc.subjectComplexity theoryen_US
dc.subjectTask analysisen_US
dc.subjectPatient-specific ECG classificationen_US
dc.subjectOperational Neural Networksen_US
dc.subjectreal-time heart monitoringen_US
dc.subjectgenerative neuronen_US
dc.subjectNeuronal Diversityen_US
dc.subjectSystemen_US
dc.subjectVariabilityen_US
dc.subjectMorphologyen_US
dc.subjectTransformen_US
dc.titleReal-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2021.3135622-
dc.identifier.pmid34910628en_US
dc.identifier.scopus2-s2.0-85121807652en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323-
dc.authoridDevecioglu, Ozer Can/0000-0002-9810-622X-
dc.authoridMalik, Hafiz Muhammad Junaid/0000-0002-2750-4028-
dc.authoridİnce, Türker/0000-0002-8495-8958-
dc.authoridkiranyaz, serkan/0000-0003-1551-3397-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorscopusid57201589931-
dc.authorscopusid57215653815-
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.volume69en_US
dc.identifier.issue5en_US
dc.identifier.startpage1788en_US
dc.identifier.endpage1801en_US
dc.identifier.wosWOS:000803112800028en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1977.pdf4.01 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

49
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

38
checked on Nov 20, 2024

Page view(s)

242
checked on Nov 18, 2024

Download(s)

80
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.