Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/2641
Title: Investigation of the Role of Convolutional Neural Network Architectures in the Diagnosis of Glaucoma using Color Fundus Photography
Authors: Atalay, Eray
Ozalp, Onur
Devecioglu, Ozer Can
Erdogan, Hakika
İnce, Türker
Yildirim, Nilgun
Keywords: Glaucoma
convolutional neural network
artificial intelligence
telemedicine
Open-Angle Glaucoma
Machine Learning Classifiers
Vision Loss
Prevalence
Deep
Classification
Population
Worldwide
Chinese
Images
Publisher: Turkish Ophthalmological Soc
Abstract: Objectives: To evaluate the performance of convolutional neural network (CNN) architectures to distinguish eyes with glaucoma from normal eyes. Materials and Methods: A total of 9,950 fundus photographs of 5,388 patients from the database of Eskisehir Osmangazi University Faculty of Medicine Ophthalmology Clinic were labelled as glaucoma, glaucoma suspect, or normal by three different experienced ophthalmologists. The categorized fundus photographs were evaluated using a state-of-the-art two-dimensional CNN and compared with deep residual networks (ResNet) and very deep neural networks (VGG). The accuracy, sensitivity, and specificity of glaucoma detection with the different algorithms were evaluated using a dataset of 238 normal and 320 glaucomatous fundus photographs. For the detection of suspected glaucoma, ResNet-101 architectures were tested with a data set of 170 normal, 170 glaucoma, and 167 glaucoma-suspect fundus photographs. Results: Accuracy, sensitivity, and specificity in detecting glaucoma were 96.2%, 99.5%, and 93.7% with ResNet-50; 97.4 degrees A, 97.8%, and 97.1% with ResNet-101; 98.9%, 100%, and 98.1% with VGG-19, and 99.4%, 100%, and 99% with the 2D CNN, respectively. Accuracy, sensitivity, and specificity values in distinguishing glaucoma suspects from normal eyes were 62%, 68%, and 56% and those for differentiating glaucoma from suspected glaucoma were 92%, 81%, and 97%, respectively. While 55 photographs could be evaluated in 2 seconds with CNN, a clinician spent an average of 24.2 seconds to evaluate a single photograph. Conclusion: An appropriately designed and trained CNN was able to distinguish glaucoma with high accuracy even with a small number of fundus photographs. Conclusion: An appropriately designed and trained CNN was able to distinguish glaucoma with high accuracy even with a small number of fundus photographs.
URI: https://doi.org/10.4274/tjo.galenos.2021.29726
https://hdl.handle.net/20.500.14365/2641
ISSN: 1300-0659
2147-2661
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
2641.pdf943.65 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 20, 2024

Page view(s)

242
checked on Nov 18, 2024

Download(s)

18
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.