Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3733
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cura O.K. | - |
dc.contributor.author | Ozdemir M.A. | - |
dc.contributor.author | Akan A. | - |
dc.contributor.author | Pehlivan S. | - |
dc.date.accessioned | 2023-06-16T15:03:06Z | - |
dc.date.available | 2023-06-16T15:03:06Z | - |
dc.date.issued | 2021 | - |
dc.identifier.isbn | 9.78908E+12 | - |
dc.identifier.issn | 2219-5491 | - |
dc.identifier.uri | https://doi.org/10.23919/Eusipco47968.2020.9287719 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3733 | - |
dc.description | 28th European Signal Processing Conference, EUSIPCO 2020 -- 24 August 2020 through 28 August 2020 -- 165944 | en_US |
dc.description.abstract | Epilepsy is a neurological disorder that affects many people all around the world, and its early detection is a topic of research widely studied in signal processing community. In this paper, a new technique that was introduced to solve problems of fluid dynamics called Dynamic Mode Decomposition (DMD), is used to classify seizure and non-seizure epileptic EEG signals. The DMD decomposes a given signal into the intrinsic oscillations called modes which are used to define a DMD spectrum. In the proposed approach, the DMD spectrum is obtained by applying either multi-channel or single-channel based DMD technique. Then, subband and total power features extracted from the DMD spectrum and various classifiers are utilized to classify seizure and non-seizure epileptic EEG segments. Outstanding classification results are achieved by both the single-channel based (96.7%), and the multi-channel based (96%) DMD approaches. © 2021 European Signal Processing Conference, EUSIPCO. All rights reserved. | en_US |
dc.description.sponsorship | 2017-ÖNAP-MÜMF-0002, 2019-TDR-FEBE-0005 | en_US |
dc.description.sponsorship | This study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit. Project numbers: 2019-TDR-FEBE-0005 and 2017-ÖNAP-MÜMF-0002. | en_US |
dc.language.iso | en | en_US |
dc.publisher | European Signal Processing Conference, EUSIPCO | en_US |
dc.relation.ispartof | European Signal Processing Conference | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | DMD spectrum | en_US |
dc.subject | Dynamic mode decomposition (DMD) | en_US |
dc.subject | Epileptic EEG classification | en_US |
dc.subject | Neurology | en_US |
dc.subject | Classification results | en_US |
dc.subject | Dynamic mode decompositions | en_US |
dc.subject | Epileptic EEG | en_US |
dc.subject | Intrinsic oscillations | en_US |
dc.subject | Multi channel | en_US |
dc.subject | Neurological disorders | en_US |
dc.subject | Single channels | en_US |
dc.subject | Total power | en_US |
dc.subject | Biomedical signal processing | en_US |
dc.title | A dynamic mode decomposition based approach for epileptic EEG classification | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.23919/Eusipco47968.2020.9287719 | - |
dc.identifier.scopus | 2-s2.0-85099312132 | en_US |
dc.authorscopusid | 57195223021 | - |
dc.authorscopusid | 35617283100 | - |
dc.authorscopusid | 57215310544 | - |
dc.identifier.volume | 2021-January | en_US |
dc.identifier.startpage | 1070 | en_US |
dc.identifier.endpage | 1074 | en_US |
dc.identifier.wos | WOS:000632622300215 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2813.pdf Restricted Access | 377.8 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
86
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.