Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3733
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura O.K.-
dc.contributor.authorOzdemir M.A.-
dc.contributor.authorAkan A.-
dc.contributor.authorPehlivan S.-
dc.date.accessioned2023-06-16T15:03:06Z-
dc.date.available2023-06-16T15:03:06Z-
dc.date.issued2021-
dc.identifier.isbn9.78908E+12-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://doi.org/10.23919/Eusipco47968.2020.9287719-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3733-
dc.description28th European Signal Processing Conference, EUSIPCO 2020 -- 24 August 2020 through 28 August 2020 -- 165944en_US
dc.description.abstractEpilepsy is a neurological disorder that affects many people all around the world, and its early detection is a topic of research widely studied in signal processing community. In this paper, a new technique that was introduced to solve problems of fluid dynamics called Dynamic Mode Decomposition (DMD), is used to classify seizure and non-seizure epileptic EEG signals. The DMD decomposes a given signal into the intrinsic oscillations called modes which are used to define a DMD spectrum. In the proposed approach, the DMD spectrum is obtained by applying either multi-channel or single-channel based DMD technique. Then, subband and total power features extracted from the DMD spectrum and various classifiers are utilized to classify seizure and non-seizure epileptic EEG segments. Outstanding classification results are achieved by both the single-channel based (96.7%), and the multi-channel based (96%) DMD approaches. © 2021 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.description.sponsorship2017-ÖNAP-MÜMF-0002, 2019-TDR-FEBE-0005en_US
dc.description.sponsorshipThis study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit. Project numbers: 2019-TDR-FEBE-0005 and 2017-ÖNAP-MÜMF-0002.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDMD spectrumen_US
dc.subjectDynamic mode decomposition (DMD)en_US
dc.subjectEpileptic EEG classificationen_US
dc.subjectNeurologyen_US
dc.subjectClassification resultsen_US
dc.subjectDynamic mode decompositionsen_US
dc.subjectEpileptic EEGen_US
dc.subjectIntrinsic oscillationsen_US
dc.subjectMulti channelen_US
dc.subjectNeurological disordersen_US
dc.subjectSingle channelsen_US
dc.subjectTotal poweren_US
dc.subjectBiomedical signal processingen_US
dc.titleA dynamic mode decomposition based approach for epileptic EEG classificationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/Eusipco47968.2020.9287719-
dc.identifier.scopus2-s2.0-85099312132en_US
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.authorscopusid57215310544-
dc.identifier.volume2021-Januaryen_US
dc.identifier.startpage1070en_US
dc.identifier.endpage1074en_US
dc.identifier.wosWOS:000632622300215en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2813.pdf
  Restricted Access
377.8 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

86
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.