Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/4671| Title: | First-Principle Validation of Fourier's Law in D=1, 2, 3 Classical Systems | Authors: | Tsallis, Constantino Lima, Henrique Santos Tırnaklı, Uğur Eroğlu, Deniz |
Keywords: | Nonextensive statistical mechanics Langevin dynamics Linear transport phenomena Irreversibility Conduction |
Publisher: | Elsevier | Abstract: | We numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V. | URI: | https://doi.org/10.1016/j.physd.2023.133681 https://hdl.handle.net/20.500.14365/4671 |
ISSN: | 0167-2789 1872-8022 |
| Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.