Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5238
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDirek, Tugay-
dc.date.accessioned2024-03-30T11:21:40Z-
dc.date.available2024-03-30T11:21:40Z-
dc.date.issued2024-
dc.identifier.issn1863-1703-
dc.identifier.urihttps://doi.org/10.1007/s11760-024-03086-4-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5238-
dc.description.abstractNon-local means (NL-Means) algorithm which removes the noise from the image have been used in the field widely due to its good performance especially for magnetic resonance images which consists of three dimensional data. Its main idea is using all the pixels which are local and non-local in an image and taking weighted averaging of all values. One negative side of this method is that it considers all pixels in the image without looking at their similarity. This paper proposes an NL-Means algorithm with pixel selection by applying linear regression analysis using root mean squared error (RMSE) value. After regression analysis, RMSE of the neighborhoods is used to exclude non-similar pixels during the noise removal. Lastly, obtained results were compared by four different methods which are NL-Means algorithm and, Gaussian, anisotropic diffusion and median filterings. All of the methods were outperformed by our method on structured similarity index and peak signal-to-noise ratio quantitative metrics. Moreover, the level of increase on visual qualities are also represented as a qualitative analysis. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofSignal, Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectImage denoisingen_US
dc.subjectImage processingen_US
dc.subjectMachine learningen_US
dc.subjectNoise removalen_US
dc.subjectPixel selectionen_US
dc.subjectSmoothing filteren_US
dc.subjectImage denoisingen_US
dc.subjectLearning algorithmsen_US
dc.subjectMagnetic resonanceen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectMean square erroren_US
dc.subjectMedian filtersen_US
dc.subjectPixelsen_US
dc.subjectQuality controlen_US
dc.subjectRegression analysisen_US
dc.subjectSignal to noise ratioen_US
dc.subjectImages processingen_US
dc.subjectLocal meanen_US
dc.subjectMachine-learningen_US
dc.subjectNoises removalen_US
dc.subjectNonlocalen_US
dc.subjectPerformanceen_US
dc.subjectPixel selectionen_US
dc.subjectRoot mean squared errorsen_US
dc.subjectSmoothing filtersen_US
dc.subjectThree-dimensional dataen_US
dc.subjectMachine learningen_US
dc.titleImage denoising by linear regression on non-local means algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11760-024-03086-4-
dc.identifier.scopus2-s2.0-85187672572en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid58880204100-
dc.identifier.wosWOS:001182210700001en_US
dc.institutionauthorDirek, T.-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5238.pdf226.57 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

76
checked on Nov 18, 2024

Download(s)

46
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.