Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5252
Title: | Detection of attention deficit hyperactivity disorder by using EEG signals and deep learning | Other Titles: | Dikkat eksikliği hiperaktivite bozukluğunun EEG sinyalleri ve derin öğrenmeyle tespiti | Authors: | Coşmaz, Efe Utku | Advisors: | Akan, Aydin | Keywords: | Elektrik ve Elektronik Mühendisliği Electrical and Electronics Engineering |
Publisher: | İzmir Ekonomi Üniversitesi | Abstract: | Dikkat eksikliği hiperaktivite bozukluğu (DEHB) genelikle çocuklarda görülen, nörolojik bir hastalıktır. Bu hastalık yaşam kalitesini düşürdüğü için erken teşhis son derece önemlidir. Elektroensefalografi (EEG) bir nörogörüntüleme tekniği olup DEHB teşhisinde yoğun olarak kullanılmaktadır. Bu çalışmada aynı yaş grubundaki DEHB tanısı konmuş bireyler ve sağlıklı kontrol bireylerden dinlenme durumu EEG sinyaleri İzmir Katip Çelebi Üniversitesi, Nöroloji Kliniğinde kayıt edilmiştir. Görgül Kip Ayrışım (GKA: EMD) yöntemi ile içkin kip fonksiyonları (IMF) elde edilmiştir. Daha sonra IMF'ler ve EEG sinyallerinin kısa süreli Fourier dönüşümü yardımı ile spektrogramları hesaplanmış ve renkli imgeler olarak kayıt edilmiştir. Daha sonra spektrogram imgeleri beynin farklı bölgeleri ve bütünü bir arada kullanılarak iki boyutlu Evrişimsel Sinir Ağları (2D-CNN) eğitilerek sınıflandırılmıştır. Yapılan testlerde Python ortamında tasarlanmış olan CNN yapısı ile yaklaşık % 92, ResNet50 mimarisi ile % 96.526 sınıflandırma doğruluğuna ulaşılmıştır. Attention deficit hyperactivity disorder (ADHD) is a neurological disorder generally seen in children, and early diagnosis is extremely important. Electroencephalography (EEG) signals are used extensively to diagnose ADHD. In this study, resting state EEG signals from ADHD patients and healthy control subjects in the same age group were recorded at the Izmir Katip Celebi University, Department of Neurology, and analyzed. Intrinsic mode functions (IMF) were extracted by the Empirical Mode Decomposition (EMD) method. Then, short-term Fourier transform spectrograms of IMFs as well as the EEG signals were calculated and saved as colored images. Finally, the spectrogram images were classified by training two-dimensional Convolutional Neural Networks (2D-CNN) using different brain regions or the whole brain. In our simulations, almost 92% classification accuracy was achieved with the CNN structure designed in the Python environment, and 96.526% classification accuracy was achieved with the ResNet50 architecture. |
URI: | https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=weFMBHaUra8rsS5wi2bmHH9EvWYIB1d1bZYuffnX7NgeHpcuEtXR1scgWCMT4qud https://hdl.handle.net/20.500.14365/5252 |
Appears in Collections: | Lisansüstü Eğitim Enstitüsü Tez Koleksiyonu |
Files in This Item:
File | Size | Format | |
---|---|---|---|
5252-848891.pdf | 2.97 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
198
checked on Nov 18, 2024
Download(s)
146
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.