Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5372
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇalışkan, Gülizar-
dc.contributor.authorKumluca Topallı, Ayca-
dc.date.accessioned2024-06-29T13:07:37Z-
dc.date.available2024-06-29T13:07:37Z-
dc.date.issued2024-
dc.identifier.issn2470-1556-
dc.identifier.issn2470-1564-
dc.identifier.urihttps://doi.org/10.1080/24701556.2024.2354927-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5372-
dc.description.abstractIn order to solve the modeling issues due to data scarcity problems in the disciplines utilizing statistical approximations, a novel two-stage idea is proposed. As a use case, nanoparticle biosynthesis was selected, for which an environmentally friendly process is of vital importance. First, Box Behnken Design was used for experimental setup, quadratic model formulation and data generation. The second stage consists of Machine Learning, in which the data generated in the previous stage were fed into a Neural Network to determine the relationship between the parameters. Obtained results showed that the proposed combined strategy provided better nanoparticle size estimations than the statistical approach alone. In the absence of publicly available databases, data generation using experimental design and machine learning, as proposed here, could be a faster, lower-cost, and greener solution. Our proposed method can be applied to a wide range of biotechnology and bioengineering applications with significant advanced knowledge.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofInorganic and Nano-Metal Chemistryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectResponse surface methodologyen_US
dc.subjectdata generationen_US
dc.subjectdeep learningen_US
dc.subjectneural networksen_US
dc.subjectsilver nanoparticle biosynthesisen_US
dc.subjectResponse-Surface Methodologyen_US
dc.subjectBiological Synthesisen_US
dc.subjectPredictionen_US
dc.titleGreen synthesized silver nanoparticles in two stages: Box Behnken Design to machine learningen_US
dc.typeArticleen_US
dc.typeArticle; Early Accessen_US
dc.identifier.doi10.1080/24701556.2024.2354927-
dc.identifier.scopus2-s2.0-85193928536en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKumluca Topalli, Ayca/0000-0001-7712-5790-
dc.authoridCaliskan, Gulizar/0000-0001-6221-9495-
dc.authorwosidKumluca Topalli, Ayca/KIA-1542-2024-
dc.authorscopusid57062682900-
dc.authorscopusid59139533400-
dc.identifier.wosWOS:001230017000001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairetypeArticle; Early Access-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
crisitem.author.dept05.08. Genetics and Bioengineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

80
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.