Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5843
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKilickaya, Sertac-
dc.contributor.authorEren, Levent-
dc.date.accessioned2025-01-25T17:06:38Z-
dc.date.available2025-01-25T17:06:38Z-
dc.date.issued2024-
dc.identifier.issn0948-7921-
dc.identifier.issn1432-0487-
dc.identifier.urihttps://doi.org/10.1007/s00202-024-02764-3-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5843-
dc.descriptionKilickaya, Sertac/0000-0002-4619-8118en_US
dc.description.abstractAdjustable speed drives (ASDs) are widely used in industry for controlling electric motors in applications such as rolling mills, compressors, fans, and pumps. Condition monitoring of ASD-fed induction machines is very critical for preventing failures. Motor current signature analysis offers a non-invasive approach to assess motor condition. Application of conventional convolutional neural networks provides good results in detecting and classifying fault types for utility line-fed motors, but the accuracy drops considerably in the case of ASD-fed motors. This work introduces the use of self-organized operational neural networks to enhance the accuracy of detecting and classifying bearing faults in ASD-fed induction machines. Our approach leverages the nonlinear neurons and self-organizing capabilities of self-organized operational neural networks to better handle the non-stationary nature of ASD operations, providing more reliable fault detection and classification with minimal preprocessing and low complexity, using raw motor current data.en_US
dc.description.sponsorshipTampere University; Tampere University Hospitalen_US
dc.description.sponsorshipOpen access funding provided by Tampere University (including Tampere University Hospital).en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBearing Fault Detectionen_US
dc.subjectCondition Monitoringen_US
dc.subjectMotor Current Signature Analysisen_US
dc.subjectOperational Neural Networken_US
dc.titleBearing Fault Detection in Adjustable Speed Drives Via Self-Organized Operational Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00202-024-02764-3-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKilickaya, Sertac/0000-0002-4619-8118-
dc.authorwosidKilickaya, Sertac/AAV-4687-2020-
dc.authorwosidEren, Levent/T-2245-2019-
dc.identifier.wosWOS:001328391100001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
dc.description.woscitationindexScience Citation Index Expanded-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Feb 19, 2025

Page view(s)

28
checked on Feb 17, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.