Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5843
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kilickaya, Sertac | - |
dc.contributor.author | Eren, Levent | - |
dc.date.accessioned | 2025-01-25T17:06:38Z | - |
dc.date.available | 2025-01-25T17:06:38Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0948-7921 | - |
dc.identifier.issn | 1432-0487 | - |
dc.identifier.uri | https://doi.org/10.1007/s00202-024-02764-3 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5843 | - |
dc.description | Kilickaya, Sertac/0000-0002-4619-8118 | en_US |
dc.description.abstract | Adjustable speed drives (ASDs) are widely used in industry for controlling electric motors in applications such as rolling mills, compressors, fans, and pumps. Condition monitoring of ASD-fed induction machines is very critical for preventing failures. Motor current signature analysis offers a non-invasive approach to assess motor condition. Application of conventional convolutional neural networks provides good results in detecting and classifying fault types for utility line-fed motors, but the accuracy drops considerably in the case of ASD-fed motors. This work introduces the use of self-organized operational neural networks to enhance the accuracy of detecting and classifying bearing faults in ASD-fed induction machines. Our approach leverages the nonlinear neurons and self-organizing capabilities of self-organized operational neural networks to better handle the non-stationary nature of ASD operations, providing more reliable fault detection and classification with minimal preprocessing and low complexity, using raw motor current data. | en_US |
dc.description.sponsorship | Tampere University; Tampere University Hospital | en_US |
dc.description.sponsorship | Open access funding provided by Tampere University (including Tampere University Hospital). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Bearing Fault Detection | en_US |
dc.subject | Condition Monitoring | en_US |
dc.subject | Motor Current Signature Analysis | en_US |
dc.subject | Operational Neural Network | en_US |
dc.title | Bearing Fault Detection in Adjustable Speed Drives Via Self-Organized Operational Neural Networks | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00202-024-02764-3 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorid | Kilickaya, Sertac/0000-0002-4619-8118 | - |
dc.authorwosid | Kilickaya, Sertac/AAV-4687-2020 | - |
dc.authorwosid | Eren, Levent/T-2245-2019 | - |
dc.identifier.wos | WOS:001328391100001 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q3 | - |
dc.description.woscitationindex | Science Citation Index Expanded | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Feb 19, 2025
Page view(s)
28
checked on Feb 17, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.