Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5843
Title: Bearing Fault Detection in Adjustable Speed Drives Via Self-Organized Operational Neural Networks
Authors: Kilickaya, Sertac
Eren, Levent
Keywords: Bearing Fault Detection
Condition Monitoring
Motor Current Signature Analysis
Operational Neural Network
Publisher: Springer
Abstract: Adjustable speed drives (ASDs) are widely used in industry for controlling electric motors in applications such as rolling mills, compressors, fans, and pumps. Condition monitoring of ASD-fed induction machines is very critical for preventing failures. Motor current signature analysis offers a non-invasive approach to assess motor condition. Application of conventional convolutional neural networks provides good results in detecting and classifying fault types for utility line-fed motors, but the accuracy drops considerably in the case of ASD-fed motors. This work introduces the use of self-organized operational neural networks to enhance the accuracy of detecting and classifying bearing faults in ASD-fed induction machines. Our approach leverages the nonlinear neurons and self-organizing capabilities of self-organized operational neural networks to better handle the non-stationary nature of ASD operations, providing more reliable fault detection and classification with minimal preprocessing and low complexity, using raw motor current data.
Description: Kilickaya, Sertac/0000-0002-4619-8118
URI: https://doi.org/10.1007/s00202-024-02764-3
https://hdl.handle.net/20.500.14365/5843
ISSN: 0948-7921
1432-0487
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Feb 19, 2025

Page view(s)

28
checked on Feb 17, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.