Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMishchenko, Yuriy-
dc.date.accessioned2023-06-16T12:47:57Z-
dc.date.available2023-06-16T12:47:57Z-
dc.date.issued2016-
dc.identifier.issn0929-5313-
dc.identifier.issn1573-6873-
dc.identifier.urihttps://doi.org/10.1007/s10827-016-0611-y-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/917-
dc.description.abstractWe investigate the properties of recently proposed shotgun sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks.en_US
dc.description.sponsorshipTUBITAK ARDEB [113E611]; Bilim Akademisi-The Science Academy (Turkey) Young Investigator Award under BAGEP programen_US
dc.description.sponsorshipThe author acknowledges the financial support via the TUBITAK ARDEB 1001 research grant number 113E611 (Turkey) and Bilim Akademisi-The Science Academy (Turkey) Young Investigator Award under BAGEP program. The author acknowledges a key discussion with Liam Paninski leading to this work, and Daniel Soudry's comments on an early version of this manuscript. The author is also thankful to the anonymous reviewers, whose comments led to many critical improvements of the manuscript.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Computatıonal Neuroscıenceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFunctional connectivityen_US
dc.subjectNeuronal circuit reconstructionen_US
dc.subjectCalcium imagingen_US
dc.subjectNeuronal population activityen_US
dc.subjectCentral-Limit-Theoremen_US
dc.subjectDependent Random-Variablesen_US
dc.subjectMaximum-Likelihooden_US
dc.subjectSpike Trainsen_US
dc.subjectIn-Vivoen_US
dc.subjectMicroscopyen_US
dc.subjectFrameworken_US
dc.subjectInferenceen_US
dc.subjectNetworken_US
dc.subjectInputen_US
dc.titleConsistent estimation of complete neuronal connectivity in large neuronal populations using sparse shotgun neuronal activity samplingen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10827-016-0611-y-
dc.identifier.pmid27515518en_US
dc.identifier.scopus2-s2.0-84981525050en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid36903063500-
dc.identifier.volume41en_US
dc.identifier.issue2en_US
dc.identifier.startpage157en_US
dc.identifier.endpage184en_US
dc.identifier.wosWOS:000382404600003en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityQ4-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.02. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
917.pdf763.77 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

70
checked on Nov 18, 2024

Download(s)

18
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.