Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/92
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorEryılmaz, Serkan-
dc.contributor.authorAksoy, Timur-
dc.date.accessioned2023-06-16T12:27:39Z-
dc.date.available2023-06-16T12:27:39Z-
dc.date.issued2009-
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=CwVIqqBuz1VkysVpueogAYv9AzVXdUSVbQ0YTuT5kIJ5pTko1DxdGWGKRYRRJiAW-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/92-
dc.description.abstractBu tez literatürde sıkça çalışılmış sistemlerin hem ağırlıklı modellerinin hem de ağırlıksız (olağan) durumlarının güvenilirlik analizlerini kapsar. Çalışılan tüm ağırlıklı modellerin bileşenleri farklı, bağımsızdır ve farklı ağırlıklara sahiptirler.Literatürde zaten bulunan ağırlıklı n'den-k'lı ve ardıl n'den-k'lı sistemler incelenip detaylı bir biçimde anlatılmıştır. 3. ve 4. bölümler olağan bileşik n'den-k'lı ve ardıl n'den-k'lı sistemler ve n'den-ardıl-m-içinde-k'lı sistemleri, ağırlıklı modellere uyarlar. 3. bölüm ağırlıklı bileşik sistemlerin kesin güvenilirlik formülünü ve eşdeğer olağan modellerini açıklar. 4. bölümde n'den-ardıl-m-içinde-k'lı sistemlerin güvenilirliği için iki alt sınır ve bir üst sınır sunulmuştur.İlk alt sınır ve üst sınır ağırlıklı modellerde iyi sonuçlar verir. Aynı metotla olağan modeller için ikinci bir alt sınır bulunmuştur. Sonuçlar, iki alt sınırın olağan sistemler için de daha gelişmiş olduğunu gösterir. İkinci alt sınır, olağan sistemlerde literatürde bulunan diğer sınırlara göre bazı durumlarda daha keskindir ve tüm sistem değerleri için güvenilirliğin yaklaşık değeri olarak kullanılabilir.en_US
dc.description.abstractThis thesis concerns the reliability evaluation of weighted systems and also their non-weighted (usual) models which have been studied extensively in the literature. All studied weighted systems have nonidentical, independent components which can take arbitrary weights.Exact reliability formulas for weighted k-out-of-n and weighted consecutive k-out-of-n systems which already exist in literature are reviewed and explained explicitly. Chapters 3 and 4 introduce the adjustments of usual combined k-out-of-n and consecutive k-out-of-n systems, and k-within-consecutive-m-out-of-n systems to weighted models. Chapter 3 proposes an exact reliability formula and equivalent usual models of the weighted combined systems. Two lower bounds and an upper bound are presented for the reliability of k-within-consecutive-m-out-of-n system in Chapter 4.The first lower bound and the upper bound perform well for weighted models. A second lower bound is obtained with the same method for the usual systems. The results show that both lower bounds are improvements for usual models as well. The second lower bound performs better than other bounds for the usual systems in the literature in some cases and can be a good approximation for all values of system variables.en_US
dc.language.isoenen_US
dc.publisherİzmir Ekonomi Üniversitesien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectİstatistiken_US
dc.subjectStatisticsen_US
dc.subjectGüvenilirlik analizien_US
dc.subjectReliability analysisen_US
dc.titleReliability evaluation of systems with weighted componentsen_US
dc.title.alternativeAğırlıklı bileşenli sistemlerde güvenilirlik analizien_US
dc.typeMaster Thesisen_US
dc.departmentİEÜ, Lisansüstü Eğitim Enstitüsü, Uygulamalı İstatistik Ana Bilim Dalıen_US
dc.identifier.startpage1en_US
dc.identifier.endpage63en_US
dc.institutionauthorAksoy, Timur-
dc.relation.publicationcategoryTezen_US
dc.identifier.yoktezid246696en_US
item.grantfulltextopen-
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Lisansüstü Eğitim Enstitüsü Tez Koleksiyonu
Files in This Item:
File SizeFormat 
92.pdf317.96 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

60
checked on Nov 18, 2024

Download(s)

12
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.