Detection of Attention Deficit Hyperactivity Disorder Using Eeg Signals and Douglas-Peucker Algorithm
Loading...
Files
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms.
Description
Medical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEY
Keywords
ADHD, EEG, Douglas-Peucker Algorithm, Feature extraction, Machine learning, Deficit/Hyperactivity Disorder, Children, Gender
Fields of Science
03 medical and health sciences, 0302 clinical medicine
Citation
WoS Q
N/A
Scopus Q
N/A

OpenCitations Citation Count
N/A
Source
2022 Medıcal Technologıes Congress (Tıptekno'22)
Volume
Issue
Start Page
1
End Page
4
PlumX Metrics
Citations
Scopus : 0
Captures
Mendeley Readers : 12
Google Scholar™


