Detection of Attention Deficit Hyperactivity Disorder Using Eeg Signals and Douglas-Peucker Algorithm

dc.contributor.author Cura, Ozlem Karabiber
dc.contributor.author Aydin, Gamze N.
dc.contributor.author Celen, Sibel
dc.contributor.author Atli, Sibel Kocaaslan
dc.contributor.author Akan, Aydin
dc.date.accessioned 2023-06-16T14:31:08Z
dc.date.available 2023-06-16T14:31:08Z
dc.date.issued 2022
dc.description Medical Technologies Congress (TIPTEKNO) -- OCT 31-NOV 02, 2022 -- Antalya, TURKEY en_US
dc.description.abstract Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms. en_US
dc.description.sponsorship Biyomedikal Klinik Muhendisligi Dernegi,Izmir Ekonomi Univ en_US
dc.identifier.doi 10.1109/TIPTEKNO56568.2022.9960193
dc.identifier.isbn 978-1-6654-5432-2
dc.identifier.scopus 2-s2.0-85144092069
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO56568.2022.9960193
dc.identifier.uri https://hdl.handle.net/20.500.14365/1998
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2022 Medıcal Technologıes Congress (Tıptekno'22) en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ADHD en_US
dc.subject EEG en_US
dc.subject Douglas-Peucker Algorithm en_US
dc.subject Feature extraction en_US
dc.subject Machine learning en_US
dc.subject Deficit/Hyperactivity Disorder en_US
dc.subject Children en_US
dc.subject Gender en_US
dc.title Detection of Attention Deficit Hyperactivity Disorder Using Eeg Signals and Douglas-Peucker Algorithm en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57195223021
gdc.author.scopusid 58018530000
gdc.author.scopusid 58017867900
gdc.author.scopusid 56709608600
gdc.author.scopusid 35617283100
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Cura, Ozlem Karabiber; Aydin, Gamze N.; Celen, Sibel] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkey; [Atli, Sibel Kocaaslan] Izmir Katip Celebi Univ, Dept Biophys, Fac Med, Izmir, Turkey; [Akan, Aydin] Izmir Univ Econ, Dept Elect & Elect Engn, Izmir, Turkey en_US
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4310813804
gdc.identifier.wos WOS:000903709700048
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5349236E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.8548826E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 0.16052091
gdc.openalex.normalizedpercentile 0.44
gdc.opencitations.count 0
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Akan, Aydın
gdc.wos.citedcount 0
relation.isAuthorOfPublication 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isAuthorOfPublication.latestForDiscovery 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1998.pdf
Size:
574.48 KB
Format:
Adobe Portable Document Format