Brain Health in Diverse Settings: How Age, Demographics and Cognition Shape Brain Function
| dc.contributor.author | Hernandez H. | |
| dc.contributor.author | Baez S. | |
| dc.contributor.author | Medel V. | |
| dc.contributor.author | Moguilner S. | |
| dc.contributor.author | Cuadros J. | |
| dc.contributor.author | Santamaria-Garcia H. | |
| dc.contributor.author | Tagliazucchi E. | |
| dc.date.accessioned | 2024-06-29T13:07:45Z | |
| dc.date.available | 2024-06-29T13:07:45Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function. © 2024 The Author(s) | en_US |
| dc.description.sponsorship | Alzheimer's Association, AA; Agencia Nacional de Investigación y Desarrollo, ANID; Fogarty International Center, FIC; National Eye Institute, NEI; Universidad de Santiago de Chile, USACH; Global Brain Health Institute, GBHI; BL-SRGP2020-02; Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT: 1210176, 1210195; Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT; SG-20-725707; Alzheimer's Society: GBHI ALZ UK-22-865742; Alzheimer's Society; Rainwater Charitable Foundation, RCF: ANID/FONDAP 15150012, USS-FIN-23-FAPE-09, 1220995, ANID/PIA/ANILLOS ACT210096; Rainwater Charitable Foundation, RCF; SRGP2021-01; National Institutes of Health, NIH: 2P01AG019724; National Institutes of Health, NIH; Fondo de Fomento al Desarrollo Científico y Tecnológico, FONDEF: ID20I10152; Fondo de Fomento al Desarrollo Científico y Tecnológico, FONDEF; National Institute on Aging, NIA: R01 AG075775, R01 AG057234, R01 AG083799, R01 AG21051; National Institute on Aging, NIA | en_US |
| dc.identifier.doi | 10.1016/j.neuroimage.2024.120636 | |
| dc.identifier.issn | 1053-8119 | |
| dc.identifier.scopus | 2-s2.0-85194133921 | |
| dc.identifier.uri | https://doi.org/10.1016/j.neuroimage.2024.120636 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/5388 | |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press Inc. | en_US |
| dc.relation.ispartof | NeuroImage | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Age | en_US |
| dc.subject | Brain dynamics | en_US |
| dc.subject | Cognition | en_US |
| dc.subject | Education | en_US |
| dc.subject | Individual differences | en_US |
| dc.subject | Sex | en_US |
| dc.subject | adult | en_US |
| dc.subject | age | en_US |
| dc.subject | aged | en_US |
| dc.subject | article | en_US |
| dc.subject | benchmarking | en_US |
| dc.subject | brain function | en_US |
| dc.subject | case control study | en_US |
| dc.subject | cognition | en_US |
| dc.subject | demographics | en_US |
| dc.subject | electroencephalogram | en_US |
| dc.subject | electroencephalography | en_US |
| dc.subject | electrophysiology | en_US |
| dc.subject | entropy | en_US |
| dc.subject | female | en_US |
| dc.subject | human | en_US |
| dc.subject | knee | en_US |
| dc.subject | major clinical study | en_US |
| dc.subject | male | en_US |
| dc.subject | phenotype | en_US |
| dc.subject | adolescent | en_US |
| dc.subject | age | en_US |
| dc.subject | aging | en_US |
| dc.subject | brain | en_US |
| dc.subject | electroencephalography | en_US |
| dc.subject | individuality | en_US |
| dc.subject | middle aged | en_US |
| dc.subject | physiology | en_US |
| dc.subject | young adult | en_US |
| dc.subject | Adolescent | en_US |
| dc.subject | Adult | en_US |
| dc.subject | Age Factors | en_US |
| dc.subject | Aged | en_US |
| dc.subject | Aging | en_US |
| dc.subject | Brain | en_US |
| dc.subject | Cognition | en_US |
| dc.subject | Electroencephalography | en_US |
| dc.subject | Female | en_US |
| dc.subject | Humans | en_US |
| dc.subject | Individuality | en_US |
| dc.subject | Male | en_US |
| dc.subject | Middle Aged | en_US |
| dc.subject | Young Adult | en_US |
| dc.title | Brain Health in Diverse Settings: How Age, Demographics and Cognition Shape Brain Function | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | … | |
| gdc.author.scopusid | 58485418900 | |
| gdc.author.scopusid | 37115168100 | |
| gdc.author.scopusid | 57211181050 | |
| gdc.author.scopusid | 57194781593 | |
| gdc.author.scopusid | 57208597862 | |
| gdc.author.scopusid | 56610290700 | |
| gdc.author.scopusid | 36474176400 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | İzmir Ekonomi Üniversitesi | en_US |
| gdc.description.departmenttemp | Hernandez, H., Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Baez, S., Universidad de los Andes, Bogota, Colombia, Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Medel, V., Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Moguilner, S., Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile, Harvard Medical School, Boston, MA, United States; Cuadros, J., Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile, Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile, Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal, 5001, Venezuela; Santamaria-Garcia, H., Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia, Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia; Tagliazucchi, E., Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile, Univ | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 120636 | |
| gdc.description.volume | 295 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4398177499 | |
| gdc.identifier.pmid | 38777219 | |
| gdc.identifier.wos | WOS:001249293300001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 31.0 | |
| gdc.oaire.influence | 3.7569863E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Male | |
| gdc.oaire.keywords | Aging | |
| gdc.oaire.keywords | Supplementary Data | |
| gdc.oaire.keywords | age; brain dynamics; cognition; education; individual differences; sex | |
| gdc.oaire.keywords | Neuroimaging Data Analysis | |
| gdc.oaire.keywords | Health, Toxicology and Mutagenesis | |
| gdc.oaire.keywords | 150 | |
| gdc.oaire.keywords | Individuality | |
| gdc.oaire.keywords | Evolutionary biology | |
| gdc.oaire.keywords | Brain function | |
| gdc.oaire.keywords | Analysis of Brain Functional Connectivity Networks | |
| gdc.oaire.keywords | Cognition | |
| gdc.oaire.keywords | Sociology | |
| gdc.oaire.keywords | Cognitive psychology | |
| gdc.oaire.keywords | Psychology | |
| gdc.oaire.keywords | Cognition/physiology | |
| gdc.oaire.keywords | Individual Differences | |
| gdc.oaire.keywords | Age Factors | |
| gdc.oaire.keywords | Brain | |
| gdc.oaire.keywords | Life Sciences | |
| gdc.oaire.keywords | Electroencephalography | |
| gdc.oaire.keywords | Middle Aged | |
| gdc.oaire.keywords | Diagnosis and Management of Alzheimer's Disease | |
| gdc.oaire.keywords | FOS: Sociology | |
| gdc.oaire.keywords | FOS: Psychology | |
| gdc.oaire.keywords | Psychiatry and Mental health | |
| gdc.oaire.keywords | Neurology | |
| gdc.oaire.keywords | Function (biology) | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Brain Network Development | |
| gdc.oaire.keywords | Medicine | |
| gdc.oaire.keywords | Sex | |
| gdc.oaire.keywords | Female | |
| gdc.oaire.keywords | Demographics | |
| gdc.oaire.keywords | Radiology | |
| gdc.oaire.keywords | RC321-571 | |
| gdc.oaire.keywords | Adult | |
| gdc.oaire.keywords | Adolescent | |
| gdc.oaire.keywords | Cognitive Neuroscience | |
| gdc.oaire.keywords | Brain size | |
| gdc.oaire.keywords | 610 | |
| gdc.oaire.keywords | Neurosciences. Biological psychiatry. Neuropsychiatry | |
| gdc.oaire.keywords | Brain/physiology | |
| gdc.oaire.keywords | Education | |
| gdc.oaire.keywords | Young Adult | |
| gdc.oaire.keywords | Age | |
| gdc.oaire.keywords | Magnetic resonance imaging | |
| gdc.oaire.keywords | Health Sciences | |
| gdc.oaire.keywords | Humans | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Aged | |
| gdc.oaire.keywords | Demography | |
| gdc.oaire.keywords | The Exposome in Environmental Health Research | |
| gdc.oaire.keywords | Aging/physiology | |
| gdc.oaire.keywords | Brain Dynamics | |
| gdc.oaire.keywords | Neuroscience. Biological psychiatry. Neuropsychiatry | |
| gdc.oaire.keywords | Individual differences | |
| gdc.oaire.keywords | Environmental Science | |
| gdc.oaire.keywords | Brain Network Organization | |
| gdc.oaire.keywords | Brain dynamics | |
| gdc.oaire.keywords | Neuroscience | |
| gdc.oaire.popularity | 2.5900485E-8 | |
| gdc.oaire.publicfunded | true | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 24.59801969 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 50 | |
| gdc.plumx.pubmedcites | 13 | |
| gdc.plumx.scopuscites | 25 | |
| gdc.scopus.citedcount | 27 | |
| gdc.wos.citedcount | 24 | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 |
Files
Original bundle
1 - 1 of 1
