Detection of Alzheimer's Dementia by Using Signal Decomposition and Machine Learning Methods

dc.contributor.author Cura, Ozlem Karabiber
dc.contributor.author Akan, Aydin
dc.contributor.author Yilmaz, Gulce Cosku
dc.contributor.author Ture, Hatice Sabiha
dc.date.accessioned 2023-06-16T14:31:31Z
dc.date.available 2023-06-16T14:31:31Z
dc.date.issued 2022
dc.description.abstract Dementia is one of the most common neurological disorders causing defection of cognitive functions, and seriously affects the quality of life. In this study, various methods have been proposed for the detection and follow-up of Alzheimer's dementia (AD) with advanced signal processing methods by using electroencephalography (EEG) signals. Signal decomposition-based approaches such as empirical mode decomposition (EMD), ensemble EMD (EEMD), and discrete wavelet transform (DWT) are presented to classify EEG segments of control subjects (CSs) and AD patients. Intrinsic mode functions (IMFs) are obtained from the signals using the EMD and EEMD methods, and the IMFs showing the most significant differences between the two groups are selected by applying previously suggested selection procedures. Five-time-domain and 5-spectral-domain features are calculated using selected IMFs, and five detail and approximation coefficients of DWT. Signal decomposition processes are conducted for both 1 min and 5 s EEG segment durations. For the 1 min segment duration, all the proposed approaches yield prominent classification performances. While the highest classification accuracies are obtained using EMD (91.8%) and EEMD (94.1%) approaches from the temporal/right brain cluster, the highest classification accuracy for the DWT (95.2%) approach is obtained from the temporal/left brain cluster for 1 min segment duration. en_US
dc.description.sponsorship Izmir Katip Celebi University Scientific Research Projects Coordination Unit [2019-GAP-MMF-0003, 2019TDR-FEBE-0005] en_US
dc.description.sponsorship This paper was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project Nos: 2019-GAP-MMF-0003 and 2019TDR-FEBE-0005. We would like to thank EEG Lab technicians of Izmir Katip Celebi University Neurology Department Sleep Laboratory for their support during the EEG recording process. en_US
dc.identifier.doi 10.1142/S0129065722500423
dc.identifier.issn 0129-0657
dc.identifier.issn 1793-6462
dc.identifier.scopus 2-s2.0-85136240113
dc.identifier.uri https://doi.org/10.1142/S0129065722500423
dc.identifier.uri https://hdl.handle.net/20.500.14365/2130
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof Internatıonal Journal of Neural Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dementia en_US
dc.subject electroencephalography (EEG) en_US
dc.subject empirical mode decomposition (EMD) en_US
dc.subject ensemble EMD (EEMD) en_US
dc.subject discrete wavelet transform (DWT) en_US
dc.subject machine learning en_US
dc.subject Hilbert-Huang Transform en_US
dc.subject Eeg Background Activity en_US
dc.subject Cognitive Impairment en_US
dc.subject Permutation Entropy en_US
dc.subject Disease Patients en_US
dc.subject Complexity en_US
dc.subject Diagnosis en_US
dc.subject Connectivity en_US
dc.subject Features en_US
dc.title Detection of Alzheimer's Dementia by Using Signal Decomposition and Machine Learning Methods en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57195223021
gdc.author.scopusid 35617283100
gdc.author.scopusid 57419670500
gdc.author.scopusid 16644499400
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Cura, Ozlem Karabiber] Izmir Katip Celebi Univ, Dept Biomed Engn, TR-35620 Izmir, Turkey; [Akan, Aydin] Izmir Univ Econ, Dept Elect & Elect Engn, TR-35330 Izmir, Turkey; [Yilmaz, Gulce Cosku; Ture, Hatice Sabiha] Izmir Katip Celebi Univ, Fac Med, Dept Neurol, TR-35620 Izmir, Turkey en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 32 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4283362500
gdc.identifier.pmid 35946945
gdc.identifier.wos WOS:000847297200006
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 3.0736909E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Alzheimer Disease
gdc.oaire.keywords Quality of Life
gdc.oaire.keywords Humans
gdc.oaire.keywords Electroencephalography
gdc.oaire.keywords Signal Processing, Computer-Assisted
gdc.oaire.keywords Algorithms
gdc.oaire.popularity 1.026109E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 4.17354374
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 12
gdc.plumx.mendeley 15
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.virtual.author Akan, Aydın
gdc.virtual.author Yılmaz Çakan, Gülce Coşku
gdc.wos.citedcount 14
relation.isAuthorOfPublication 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isAuthorOfPublication bed9cda2-2ab3-4b87-9a08-cdd27240a676
relation.isAuthorOfPublication.latestForDiscovery 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 7b4bd652-27ef-4beb-a10e-dddd2d65e0fd
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication fbc53f3e-d1d3-4168-afd8-e42cd20bddd9
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files