Automated Patient-Specific Classification of Premature Ventricular Contractions

dc.contributor.author Ince, T.
dc.contributor.author Kiranyaz, S.
dc.contributor.author Gabbouj, M.
dc.date.accessioned 2025-05-25T19:24:29Z
dc.date.available 2025-05-25T19:24:29Z
dc.date.issued 2008
dc.description.abstract In this paper, we present an automated patient-specific electrocardiogram (ECG) beat classifier designed for accurate detection of premature ventricular contractions (PVCs). In the proposed feature extraction scheme, the principal component analysis (PCA) is applied to the dyadic wavelet transform (DWT) of the ECG signal to extract morphological ECG features, which are then combined with the temporal features to form a resultant efficient feature vector. For the classification scheme, we selected the feed-forward artificial neural networks (ANNs) optimally designed by the multi-dimensional particle swarm optimization (MD-PSO) technique, which evolves the structure and weights of the network specifically for each patient. Training data for the ANN classifier include both global (total of 150 representative beats randomly sampled from each class in selected training files) and local (the first 5 min of a patient's ECG recording) training patterns. Simulation results using 40 files in the MIT/BIH arrhythmia database achieved high average accuracy of 97% for differentiating normal, PVC, and other beats. en_US
dc.identifier.doi 10.1109/iembs.2008.4650453
dc.identifier.issn 1557-170X
dc.identifier.scopus 2-s2.0-84903801554
dc.identifier.uri https://doi.org/10.1109/iembs.2008.4650453
dc.identifier.uri https://hdl.handle.net/20.500.14365/6194
dc.language.iso en en_US
dc.relation.ispartof Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Automated Patient-Specific Classification of Premature Ventricular Contractions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 56259806600
gdc.author.scopusid 7801632948
gdc.author.scopusid 7005332419
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Ince T.] Izmir University of Economics, Turkey; Kiranyaz S.; Gabbouj M. en_US
gdc.description.endpage 5477 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 5474 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W2114313788
gdc.identifier.pmid 19163956
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 5.3451275E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Reproducibility of Results
gdc.oaire.keywords 006
gdc.oaire.keywords Sensitivity and Specificity
gdc.oaire.keywords Ventricular Premature Complexes
gdc.oaire.keywords Pattern Recognition, Automated
gdc.oaire.keywords Electrocardiography
gdc.oaire.keywords Artificial Intelligence
gdc.oaire.keywords Humans
gdc.oaire.keywords Diagnosis, Computer-Assisted
gdc.oaire.keywords Algorithms
gdc.oaire.popularity 3.502478E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration International
gdc.openalex.fwci 1.92073379
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 19
gdc.plumx.crossrefcites 17
gdc.plumx.mendeley 28
gdc.plumx.pubmedcites 5
gdc.plumx.scopuscites 21
gdc.scopus.citedcount 21
gdc.virtual.author İnce, Türker
relation.isAuthorOfPublication 620fe4b0-bfe7-4e8f-8157-31e93f36a89b
relation.isAuthorOfPublication.latestForDiscovery 620fe4b0-bfe7-4e8f-8157-31e93f36a89b
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files