Development of a Machine Learning Model to Predict the Expanded Disability Status Scale in Multiple Sclerosis Patients

dc.contributor.author Ozdogar, Asiye Tuba
dc.contributor.author Emec, Murat
dc.contributor.author Kaya, Ergi
dc.contributor.author Zengin, Ela Simay
dc.contributor.author Ozcanhan, Mehmet Hilal
dc.contributor.author Ozakbas, Serkan
dc.date.accessioned 2026-01-25T16:25:02Z
dc.date.available 2026-01-25T16:25:02Z
dc.date.issued 2026
dc.description Emeç, Murat/0000-0002-9407-1728; Özdoğar, Asiye Tuba/0000-0003-0043-9374 en_US
dc.description.abstract Objective: The assessment of disability in multiple sclerosis (MS) patients is crucial for treatment decisions and prognosis estimation. The Expanded Disability Status Scale (EDSS) provides a standardized way to quantify disability in MS. However, predicting EDSS scores can be challenging due to the complex and heterogeneous nature of the disease. Machine learning techniques offer a promising approach to predict EDSS scores based on various patient characteristics. Methods: 231 people with MS (pwMS) who had an assessment of physical, psychosocial, and cognitive functions in three timelines (baseline (T0), first year (T1), and second year (T2)) were enrolled. The dataset used for the study consists of 126 features. Feature selection was based on feature saliency and correlation analysis. Three machine learning models -XGBoost, Random Forest, and Linear Regression -were trained on the selected features. Hyperparameter tuning was also carried out on the models. Model performance was evaluated using standard evaluation metrics, including MAE, MSE, and R2. Results: The Machine Learning model based on the XGBoost algorithm performed best in predicting EDSS scores (T2). The MAE value obtained with the XGBoost model is 0.2361, the MSE value is 0.2408, and the R2 value is 0.9705. These results indicate that XGBoost's predictive ability on the current dataset is promising. Conclusion: Our study demonstrates the feasibility of using machine learning techniques to predict EDSS scores in MS patients. The developed models show promising performance and have the potential to enhance clinical decision-making and patient management in MS care. en_US
dc.identifier.doi 10.1016/j.msard.2025.106937
dc.identifier.issn 2211-0348
dc.identifier.issn 2211-0356
dc.identifier.scopus 2-s2.0-105025534479
dc.identifier.uri https://doi.org/10.1016/j.msard.2025.106937
dc.identifier.uri https://hdl.handle.net/20.500.14365/8618
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Multiple Sclerosis and Related Disorders en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Machine Learning en_US
dc.subject Disability en_US
dc.subject Management en_US
dc.subject Multiple Sclerosis en_US
dc.title Development of a Machine Learning Model to Predict the Expanded Disability Status Scale in Multiple Sclerosis Patients en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Emeç, Murat/0000-0002-9407-1728
gdc.author.id Özdoğar, Asiye Tuba/0000-0003-0043-9374
gdc.author.scopusid 57197818415
gdc.author.scopusid 57216408618
gdc.author.scopusid 57407711000
gdc.author.scopusid 59603512800
gdc.author.scopusid 35113661700
gdc.author.scopusid 6602895100
gdc.author.wosid Emeç, Murat/Acf-6411-2022
gdc.author.wosid Özdoğar, Asiye Tuba/Aar-7623-2020
gdc.author.wosid Zengin, Ela/Omk-7035-2025
gdc.author.wosid Kaya, Ergi/Aal-6637-2020
gdc.author.wosid Özcanhan, Mehmet/S-5013-2016
gdc.author.wosid Ozakbas, Serkan/V-6427-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Ozdogar, Asiye Tuba] Van Yuzuncu Yil Univ, Fac Hlth Sci, Dept Physiotherapy, Van, Turkiye; [Emec, Murat] Istanbul Univ, Fac Comp Sci, Comp Sci, Istanbul, Turkiye; [Kaya, Ergi] Dokuz Eylul Univ, Fac Med, Neurol, Izmir, Turkiye; [Zengin, Ela Simay; Ozakbas, Serkan] Izmir Univ Econ, Med Point Hosp, Izmir, Turkiye; [Ozcanhan, Mehmet Hilal] Dokuz Eylul Univ, Dept Comp Engn, Izmir, Turkiye; [Ozakbas, Serkan] MS Res Assoc, Izmir, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 106937
gdc.description.volume 107 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W7116043524
gdc.identifier.pmid 41447910
gdc.identifier.wos WOS:001654902700002
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.popularity 2.0862079E-10
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Özakbaş, Serkan
gdc.wos.citedcount 0
relation.isAuthorOfPublication 0750ade3-1d29-450d-8c26-aaa8708d1bb0
relation.isAuthorOfPublication.latestForDiscovery 0750ade3-1d29-450d-8c26-aaa8708d1bb0
relation.isOrgUnitOfPublication 7b4bd652-27ef-4beb-a10e-dddd2d65e0fd
relation.isOrgUnitOfPublication fbc53f3e-d1d3-4168-afd8-e42cd20bddd9
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery 7b4bd652-27ef-4beb-a10e-dddd2d65e0fd

Files