A Novel Approach to Depression Detection Using POV Glasses and Machine Learning for Multimodal Analysis

Loading...
Publication Logo

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Media SA

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Background Major depressive disorder (MDD) remains challenging to diagnose due to its reliance on subjective interviews and self-reports. Objective, technology-driven methods are increasingly needed to support clinical decision-making. Wearable point-of-view (POV) glasses, which capture both visual and auditory streams, may offer a novel solution for multimodal behavioral analysis.Objective This study investigated whether features extracted from POV glasses, analyzed with machine learning, can differentiate individuals with MDD from healthy controls.Methods We studied 44 MDD patients and 41 age/sex-matched HCs (18-55 years). During semi-structured interviews, POV glasses recorded video and audio data. Visual features included gaze distribution, smiling duration, eye-blink frequency, and head movements. Speech features included response latency, silence ratio, and word count. Recursive feature elimination was applied. Multiple classifiers were evaluated, and the primary model-ExtraTrees-was assessed using leave-one-out cross-validation.Results After Bonferroni correction, smiling duration, center gaze and happy face duration showed significant group differences. The multimodal classifier achieved an accuracy of 84.7%, sensitivity of 90.9%, specificity of 78%, and an F1 score of 86%.Conclusions POV glasses combined with machine learning successfully captured multimodal behavioral markers distinguishing MDD from controls. This low-burden, wearable approach demonstrates promise as an objective adjunct to psychiatric assessment. Future studies should evaluate its generalizability in larger, more diverse populations and real-world clinical settings.

Description

Keywords

Major Depressive Disorder, Machine Learning, Multimodal Analysis, Wearable Technology, Point-of-View Glasses, Artificial Intelligence, Computer Vision, Original Research

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Frontiers in Psychiatry

Volume

16

Issue

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.