Eeg Biomarkers in Alzheimer's and Prodromal Alzheimer's: a Comprehensive Analysis of Spectral and Connectivity Features

dc.contributor.author Chetty, Chowtapalle Anuraag
dc.contributor.author Bhardwaj, Harsha
dc.contributor.author Kumar, G. Pradeep
dc.contributor.author Devanand, T.
dc.contributor.author Sekhar, C. S. Aswin
dc.contributor.author Akturk, Tuba
dc.contributor.author Kiyi, Ilayda
dc.date.accessioned 2024-11-25T16:53:45Z
dc.date.available 2024-11-25T16:53:45Z
dc.date.issued 2024
dc.description.abstract BackgroundBiomarkers of Alzheimer's disease (AD) and mild cognitive impairment (MCI, or prodromal AD) are highly significant for early diagnosis, clinical trials and treatment outcome evaluations. Electroencephalography (EEG), being noninvasive and easily accessible, has recently been the center of focus. However, a comprehensive understanding of EEG in dementia is still needed. A primary objective of this study is to investigate which of the many EEG characteristics could effectively differentiate between individuals with AD or prodromal AD and healthy individuals.MethodsWe collected resting state EEG data from individuals with AD, prodromal AD, and normal cognition. Two distinct preprocessing pipelines were employed to study the reliability of the extracted measures across different datasets. We extracted 41 different EEG features. We have also developed a stand-alone software application package, Feature Analyzer, as a comprehensive toolbox for EEG analysis. This tool allows users to extract 41 EEG features spanning various domains, including complexity measures, wavelet features, spectral power ratios, and entropy measures. We performed statistical tests to investigate the differences in AD or prodromal AD from age-matched cognitively normal individuals based on the extracted EEG features, power spectral density (PSD), and EEG functional connectivity.ResultsSpectral power ratio measures such as theta/alpha and theta/beta power ratios showed significant differences between cognitively normal and AD individuals. Theta power was higher in AD, suggesting a slowing of oscillations in AD; however, the functional connectivity of the theta band was decreased in AD individuals. In contrast, we observed increased gamma/alpha power ratio, gamma power, and gamma functional connectivity in prodromal AD. Entropy and complexity measures after correcting for multiple electrode comparisons did not show differences in AD or prodromal AD groups. We thus catalogued AD and prodromal AD-specific EEG features.ConclusionsOur findings reveal that the changes in power and connectivity in certain frequency bands of EEG differ in prodromal AD and AD. The spectral power, power ratios, and the functional connectivity of theta and gamma could be biomarkers for diagnosis of AD and prodromal AD, measure the treatment outcome, and possibly a target for brain stimulation. en_US
dc.description.sponsorship This work was supported by the CBR start-up fund (CA) and the India Alliance DBT Wellcome Trust grant (IA/I/22/1/506257; CA) [09/1233(16115)/2022-EMR-I, 09/1233(15927)/2022-EMR-I]; CSIR [31590]; Brain and Behavior Research Foundation [A/E/22/1/506784]; India Alliance DBT Wellcome Trust Early Career Fellowship en_US
dc.description.sponsorship We thank Dr. Venkatasubramanian Ganesan and all members of the Chinna lab for their helpful discussions and feedback on the manuscript. We thank CSIR for research fellowships to CAC (CSIR UGC NET, 09/1233(16115)/2022-EMR-I) and HB (CSIR UGC NET, 09/1233(15927)/2022-EMR-I). We also thank the Brain and Behavior Research Foundation for NARSAD young investigator support to CA (#31590), and India Alliance DBT Wellcome Trust Early Career Fellowship to JJ (A/E/22/1/506784). en_US
dc.identifier.doi 10.1186/s13195-024-01582-w
dc.identifier.issn 1758-9193
dc.identifier.scopus 2-s2.0-85207348853
dc.identifier.uri https://doi.org/10.1186/s13195-024-01582-w
dc.identifier.uri https://hdl.handle.net/20.500.14365/5593
dc.language.iso en en_US
dc.publisher BMC en_US
dc.relation.ispartof Alzheimers Research & Therapy en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject EEG-based biomarker en_US
dc.subject Theta-alpha power ratio en_US
dc.subject Gamma en_US
dc.subject Eyes closed EEG en_US
dc.subject Slowing of oscillations en_US
dc.subject Pairwise phase consistency en_US
dc.subject Brain connectivity en_US
dc.subject Aging en_US
dc.subject Mild Cognitive Impairment en_US
dc.subject Disease en_US
dc.subject Frequency en_US
dc.subject Pet en_US
dc.title Eeg Biomarkers in Alzheimer's and Prodromal Alzheimer's: a Comprehensive Analysis of Spectral and Connectivity Features en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional
gdc.author.scopusid 59247237500
gdc.author.scopusid 59383218000
gdc.author.scopusid 57191158942
gdc.author.scopusid 59383635300
gdc.author.scopusid 59383912500
gdc.author.scopusid 57200757500
gdc.author.scopusid 57454521600
gdc.author.wosid Kiyi, Ilayda/KRP-1042-2024
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Chetty, Chowtapalle Anuraag; Bhardwaj, Harsha; Kumar, G. Pradeep; Devanand, T.; Sekhar, C. S. Aswin; Joseph, Justin; Adaikkan, Chinnakkaruppan] Indian Inst Sci, Ctr Brain Res, CV Raman Ave, Bangalore 560012, India; [Akturk, Tuba; Guntekin, Bahar] Istanbul Medipol Univ, Res Inst Hlth Sci & Technol SABITA, Neurosci Res Ctr, TR-34810 Istanbul, Turkiye; [Kiyi, Ilayda] Dokuz Eylul Univ, Hlth Sci Inst, Dept Neurosci, TR-35330 Izmir, Turkiye; [Yener, Gorsev] Izmir Univ Econ, Fac Med, TR-35330 Izmir, Turkiye; [Yener, Gorsev] Dokuz Eylul Univ, Brain Dynam Res Ctr, TR-35330 Izmir, Turkiye; [Yener, Gorsev] Biomed & Genome Ctr, TR-35340 Izmir, Turkiye; [Guntekin, Bahar] Istanbul Medipol Univ, Sch Med, Dept Biophys, TR-34810 Istanbul, Turkiye; [Bhardwaj, Harsha] Manipal Acad Higher Educ, Manipal 576104, India en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 16 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4403704102
gdc.identifier.pmid 39449097
gdc.identifier.wos WOS:001340656800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 30.0
gdc.oaire.influence 3.586154E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Male
gdc.oaire.keywords Aged, 80 and over
gdc.oaire.keywords Research
gdc.oaire.keywords Slowing of oscillations
gdc.oaire.keywords 610
gdc.oaire.keywords Prodromal Symptoms
gdc.oaire.keywords Brain
gdc.oaire.keywords Neurosciences. Biological psychiatry. Neuropsychiatry
gdc.oaire.keywords Electroencephalography
gdc.oaire.keywords Theta-alpha power ratio
gdc.oaire.keywords Middle Aged
gdc.oaire.keywords Pairwise phase consistency
gdc.oaire.keywords EEG-based biomarker
gdc.oaire.keywords Centre for Brain Research
gdc.oaire.keywords Eyes closed EEG
gdc.oaire.keywords Alzheimer Disease
gdc.oaire.keywords Humans
gdc.oaire.keywords Female
gdc.oaire.keywords Cognitive Dysfunction
gdc.oaire.keywords Gamma
gdc.oaire.keywords Neurology. Diseases of the nervous system
gdc.oaire.keywords RC346-429
gdc.oaire.keywords Biomarkers
gdc.oaire.keywords RC321-571
gdc.oaire.keywords Aged
gdc.oaire.popularity 2.2728148E-8
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 26.00362081
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 50
gdc.plumx.newscount 1
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 23
gdc.scopus.citedcount 24
gdc.wos.citedcount 17
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery e9e77e3e-bc94-40a7-9b24-b807b2cd0319

Files