Classification of Epileptic Eeg Signals Using Synchrosqueezing Transform and Machine Learning

dc.contributor.author Cura, Ozlem Karabiber
dc.contributor.author Akan, Aydin
dc.date.accessioned 2023-06-16T14:31:30Z
dc.date.available 2023-06-16T14:31:30Z
dc.date.issued 2021
dc.description.abstract Epilepsy is a neurological disease that is very common worldwide. Patient's electroencephalography (EEG) signals are frequently used for the detection of epileptic seizure segments. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezing Transform (SST) is used to detect epileptic seizures. Two different EEG data sets, the IKCU data set we collected, and the publicly available CHB-MIT data set are analyzed to test the performance of the proposed model in seizure detection. The SST representations of seizure and nonseizure (pre-seizure or inter-seizure) EEG segments of epilepsy patients are calculated. Various features like higher-order joint TF (HOJ-TF) moments and gray-level co-occurrence matrix (GLCM)-based features are calculated using the SST representation. By using single and ensemble machine learning methods such as k-Nearest Neighbor (kNN), Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Boosted Trees (BT), and Subspace kNN (S-kNN), EEG features are classified. The proposed SST-based approach achieved 95.1% ACC, 96.87% PRE, 95.54% REC values for the IKCU data set, and 95.13% ACC, 93.37% PRE, 90.30% REC values for the CHB-MIT data set in seizure detection. Results show that the proposed SST-based method utilizing novel TF features outperforms the short-time Fourier transform (STFT)-based approach, providing over 95% accuracy for most cases, and compares well with the existing methods. en_US
dc.identifier.doi 10.1142/S0129065721500052
dc.identifier.issn 0129-0657
dc.identifier.issn 1793-6462
dc.identifier.scopus 2-s2.0-85100590203
dc.identifier.uri https://doi.org/10.1142/S0129065721500052
dc.identifier.uri https://hdl.handle.net/20.500.14365/2126
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.ispartof Internatıonal Journal of Neural Systems en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Synchrosqueezing transform (SST) en_US
dc.subject electroencephalogram (EEG) en_US
dc.subject epileptic seizure classification en_US
dc.subject machine learning en_US
dc.subject Time-Frequency Analysis en_US
dc.subject Wavelet Transform en_US
dc.subject Seizure Detection en_US
dc.subject Neural-Network en_US
dc.subject Methodology en_US
dc.subject Image en_US
dc.subject Joint en_US
dc.title Classification of Epileptic Eeg Signals Using Synchrosqueezing Transform and Machine Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57195223021
gdc.author.scopusid 35617283100
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department İzmir Ekonomi Üniversitesi en_US
gdc.description.departmenttemp [Cura, Ozlem Karabiber] Izmir Katip Celebi Univ, Dept Biomed Engn, TR-35620 Izmir, Turkey; [Akan, Aydin] Izmir Univ Econ, Dept Elect & Elect Engn, TR-35330 Izmir, Turkey en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 2150005
gdc.description.volume 31 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3107281365
gdc.identifier.pmid 33522458
gdc.identifier.wos WOS:000637815000005
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 21.0
gdc.oaire.influence 3.116718E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Machine Learning
gdc.oaire.keywords Epilepsy
gdc.oaire.keywords Humans
gdc.oaire.keywords Bayes Theorem
gdc.oaire.keywords Electroencephalography
gdc.oaire.keywords Signal Processing, Computer-Assisted
gdc.oaire.popularity 1.8541861E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 2.88710206
gdc.openalex.normalizedpercentile 0.9
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 21
gdc.plumx.mendeley 31
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 29
gdc.scopus.citedcount 29
gdc.virtual.author Akan, Aydın
gdc.wos.citedcount 28
relation.isAuthorOfPublication 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isAuthorOfPublication.latestForDiscovery 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd
relation.isOrgUnitOfPublication b02722f0-7082-4d8a-8189-31f0230f0e2f
relation.isOrgUnitOfPublication 26a7372c-1a5e-42d9-90b6-a3f7d14cad44
relation.isOrgUnitOfPublication e9e77e3e-bc94-40a7-9b24-b807b2cd0319
relation.isOrgUnitOfPublication.latestForDiscovery b02722f0-7082-4d8a-8189-31f0230f0e2f

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
S012906572150026X.pdf
Size:
3.05 MB
Format:
Adobe Portable Document Format