Classification of Epileptic Eeg Signals Using Synchrosqueezing Transform and Machine Learning
| dc.contributor.author | Cura, Ozlem Karabiber | |
| dc.contributor.author | Akan, Aydin | |
| dc.date.accessioned | 2023-06-16T14:31:30Z | |
| dc.date.available | 2023-06-16T14:31:30Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Epilepsy is a neurological disease that is very common worldwide. Patient's electroencephalography (EEG) signals are frequently used for the detection of epileptic seizure segments. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezing Transform (SST) is used to detect epileptic seizures. Two different EEG data sets, the IKCU data set we collected, and the publicly available CHB-MIT data set are analyzed to test the performance of the proposed model in seizure detection. The SST representations of seizure and nonseizure (pre-seizure or inter-seizure) EEG segments of epilepsy patients are calculated. Various features like higher-order joint TF (HOJ-TF) moments and gray-level co-occurrence matrix (GLCM)-based features are calculated using the SST representation. By using single and ensemble machine learning methods such as k-Nearest Neighbor (kNN), Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), Boosted Trees (BT), and Subspace kNN (S-kNN), EEG features are classified. The proposed SST-based approach achieved 95.1% ACC, 96.87% PRE, 95.54% REC values for the IKCU data set, and 95.13% ACC, 93.37% PRE, 90.30% REC values for the CHB-MIT data set in seizure detection. Results show that the proposed SST-based method utilizing novel TF features outperforms the short-time Fourier transform (STFT)-based approach, providing over 95% accuracy for most cases, and compares well with the existing methods. | en_US |
| dc.identifier.doi | 10.1142/S0129065721500052 | |
| dc.identifier.issn | 0129-0657 | |
| dc.identifier.issn | 1793-6462 | |
| dc.identifier.scopus | 2-s2.0-85100590203 | |
| dc.identifier.uri | https://doi.org/10.1142/S0129065721500052 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14365/2126 | |
| dc.language.iso | en | en_US |
| dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
| dc.relation.ispartof | Internatıonal Journal of Neural Systems | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Synchrosqueezing transform (SST) | en_US |
| dc.subject | electroencephalogram (EEG) | en_US |
| dc.subject | epileptic seizure classification | en_US |
| dc.subject | machine learning | en_US |
| dc.subject | Time-Frequency Analysis | en_US |
| dc.subject | Wavelet Transform | en_US |
| dc.subject | Seizure Detection | en_US |
| dc.subject | Neural-Network | en_US |
| dc.subject | Methodology | en_US |
| dc.subject | Image | en_US |
| dc.subject | Joint | en_US |
| dc.title | Classification of Epileptic Eeg Signals Using Synchrosqueezing Transform and Machine Learning | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57195223021 | |
| gdc.author.scopusid | 35617283100 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | İzmir Ekonomi Üniversitesi | en_US |
| gdc.description.departmenttemp | [Cura, Ozlem Karabiber] Izmir Katip Celebi Univ, Dept Biomed Engn, TR-35620 Izmir, Turkey; [Akan, Aydin] Izmir Univ Econ, Dept Elect & Elect Engn, TR-35330 Izmir, Turkey | en_US |
| gdc.description.issue | 5 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 2150005 | |
| gdc.description.volume | 31 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3107281365 | |
| gdc.identifier.pmid | 33522458 | |
| gdc.identifier.wos | WOS:000637815000005 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.index.type | PubMed | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 21.0 | |
| gdc.oaire.influence | 3.116718E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Machine Learning | |
| gdc.oaire.keywords | Epilepsy | |
| gdc.oaire.keywords | Humans | |
| gdc.oaire.keywords | Bayes Theorem | |
| gdc.oaire.keywords | Electroencephalography | |
| gdc.oaire.keywords | Signal Processing, Computer-Assisted | |
| gdc.oaire.popularity | 1.8541861E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0302 clinical medicine | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 2.88710206 | |
| gdc.openalex.normalizedpercentile | 0.9 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 21 | |
| gdc.plumx.mendeley | 31 | |
| gdc.plumx.pubmedcites | 3 | |
| gdc.plumx.scopuscites | 29 | |
| gdc.scopus.citedcount | 29 | |
| gdc.virtual.author | Akan, Aydın | |
| gdc.wos.citedcount | 28 | |
| relation.isAuthorOfPublication | 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd | |
| relation.isAuthorOfPublication.latestForDiscovery | 9b1a1d3d-05af-4982-b7d1-0fefff6ac9fd | |
| relation.isOrgUnitOfPublication | b02722f0-7082-4d8a-8189-31f0230f0e2f | |
| relation.isOrgUnitOfPublication | 26a7372c-1a5e-42d9-90b6-a3f7d14cad44 | |
| relation.isOrgUnitOfPublication | e9e77e3e-bc94-40a7-9b24-b807b2cd0319 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b02722f0-7082-4d8a-8189-31f0230f0e2f |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- S012906572150026X.pdf
- Size:
- 3.05 MB
- Format:
- Adobe Portable Document Format
